Geometric programming with probabilistic decision variables
نویسندگان
چکیده
منابع مشابه
Geometric Programming Problem with Trapezoidal Fuzzy Variables
Nowadays Geometric Programming (GP) problem is a very popular problem in many fields. Each type of Fuzzy Geometric Programming (FGP) problem has its own solution. Sometimes we need to use the ranking function to change some part of GP to the linear one. In this paper, first, we propose a method to solve multi-objective geometric programming problem with trapezoidal fuzzy variables; then we use ...
متن کاملProbabilistic Argumentation Systems with Decision Variables
The general concept of probabilistic argumentation systems PAS is restricted to the two types of variables: assumptions, which model the uncertain part of the knowledge, and propositions, which model the rest of the information. Here, we introduce a third kind into PAS: so-called decision variables. This new kind allows to describe the decisions a user can make to react on some state of the sys...
متن کاملGeometric Programming with Stochastic Parameter
Geometric programming is efficient tool for solving a variety of nonlinear optimizationproblems. Geometric programming is generalized for solving engineering design. However,Now Geometric programming is powerful tool for optimization problems where decisionvariables have exponential form.The geometric programming method has been applied with known parameters. However,the observed values of the ...
متن کاملSolution of Probabilistic Constrained Stochastic Programming Problems with Poisson, Binomial and Geometric Random Variables
Probabilistic constrained stochastic programming problems are considered with discrete random variables on the r.h.s. in the stochastic constraints. It is assumed that the random vector has multivariate Poisson, binomial or geometric distribution. We prove a general theorem that implies that in each of the above cases the c.d.f. majorizes the product of the univariate marginal c.d.f’s and then ...
متن کاملA goal geometric programming problem (G2P2) with logarithmic deviational variables and its applications on two industrial problems
A very useful multi-objective technique is goal programming. There are many methodologies of goal programming such as weighted goal programming, min-max goal programming, and lexicographic goal programming. In this paper, weighted goal programming is reformulated as goal programming with logarithmic deviation variables. Here, a comparison of the proposed method and goal programming with weighte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Journal of the Australian Mathematical Society. Series B. Applied Mathematics
سال: 1980
ISSN: 0334-2700,1839-4078
DOI: 10.1017/s0334270000002307